Capítulo 4. AJUSTES INVERSORES WAVE LITE

Los inversores Wave Lite serán utilizados en el entrenamiento para poner a punto la tarjeta 512-812 dado a este producto utiliza dicha tarjeta.

- Ajustes en el equipo Wave Lite
 La tarjeta contiene básicamente 5 controles o potenciómetros para ajustar la Frecuencia
 de salida, Voltaje de Salida, Corriente de inyección, Voltaje de flotación y Margen inferior
 de AC.
 - a) Frecuencia de Salida: Este permite ajustar la frecuencia central de 60Hz a través del potenciómetro R24. Dicha frecuencia solo podrá ser controlada con el equipo en modo inversor.
 - b) **Voltaje de Salida:** Con el potenciómetro **R3** podremos ajustar la modulación de la onda y por ende cambiar el voltaje de salida cuando el equipo está en modo inversor.
 - c) Corriente de carga: El cargador de la tarjeta 512-812 permite predeterminar el amperaje Máximo DC suministrado por el equipo, es **R87** quien se encarga de ajustar el nivel máximo cuando el equipo está en modo Línea en su primera etapa (inyección).
 - d) **Voltaje de flotación:** Con este ajuste podremos controlar el nivel máximo del voltaje de baterías cuando estas hayan sido cargadas totalmente (alrededor del 90%). Sera **R82** quien permita realizar dicho ajuste en la segunda etapa de carga.
 - e) **Margen Inferior AC:** Las tarjetas por lo general tienen una ventana para ajustar los márgenes de transferencia del equipo cuando se produzca tanto un bajo voltaje como alto voltaje. LA tarjeta 512-812 solo maneja el margen Inferior, el cual puede ser llevado ajustado desde 85Vac a 100Vac. Recuerde que mientras más alto es el nivel, mas rápido producirá la transferencia a modo inversor. **R43** se encarga de esta función.

Capítulo 5. LOCALIZACIÓN DE FALLAS 512-812 LITE V1

5.1 No enciende en modo inversor (prende el LED de Inv. y se apaga inmediatamente). Reemplazar:

- a) Si el equipo se esta ensamblando por 1ra vez:
 - Si el Voltaje de salida (120Vac) ajustado del inversor es muy bajo, el equipo se apaga inmediatamente, por lo que tendrás que revisar el transformador o ver si se conecto extraviadamente Tag de carga como salida o bien deba subir el voltaje mediante el potenciómetro R3.
 - ii) Si el voltaje de la batería o fuente de prueba supera los 13.6Vdc la tarjeta apaga por Hi-Battery, esto solo es crítico cuando el equipo está en línea (energía externa) y se va la energía de la calle o línea.
 - iii) El interruptor On/ Off/ On (o indicadores "I-II") encenderá el inversor solo en la posición "II" luego de hacer una pausa de no menos de 3 seg. En la posición central del interruptor (Off). **NOTA: el interruptor debe ser de 3 posiciones.**
- b) Revisa primero etapa de potencia según caso:

Caso I: equipos sin tarjeta de potencia adicional (1Kw~1.Kw @ 12Vdc)

- i) Revisar transistores Mosfet de Inversión
- ii) Revisar transistores Mosfet de cancelación (Mosfet Q4, Q5, Q22 y Q23)
- iii) Q1 (driver de cancelación 2N3904) puede estar abierto reemplazar.

Caso II: equipos con tarjeta de potencia adicional (1.5Kw @ 24V o mayor)

- i) Revisar transistores Mosfet del puente H (puede haber ¼ averiado).
- ii) El Fet Driver HIP4082 podría estar parcialmente averiado.
- iii) La señal de encendido podría no estar llegando al transistor que invierte el nivel lógico para activar el Fet Driver. La misma se toma de la salida del buffer U5C pin6.

c) Revisar señales y niveles de control como:

- i) Ver con el osciloscopio que U1 (SG3524) este bueno, para esto medir los pines 12 y 13, los cuales proveen la señal de conmutación invertida (similar a la figura 2B). En caso de no estar estas señales y el pin 10 estar en 0V, reemplazar U1. Si el Pin 10 posee un voltaje mayor a 1V, entonces D1/ D2/ U4 deberían de estar averiado.
- ii) En caso de U1 estar bueno, ver señales invertida nuevamente por U2 pines 10 y 11, para poder ver las señales aquí será necesario puentear los pines 6-7 de U6 (en caso de presenciar un alto consumo al puentear estos dos pines, es probable que haya un problema la etapa de potencia o el transformador este averiado), si no hay señal, reemplazar U2 (CD4001).
- iii) En caso de que el punto anterior haga trabajar correctamente el equipo, nos hace sospechar de U5 (hace de buffer para el circuito detector de Línea) y U6 (es el circuito detector de línea y Latch de sobre carga).
- iv) C32 (Over Load Detect) / C9 (oscilador de U1) pueden esta averiados.
- v) En dado caso del que el punto 2 no haya surgido efecto, U5 debería estar averiado. Reemplazar

5.2 No transfiere a Línea. Revisar y Reemplazar:

- a) T1 (512-812-T1).
- b) U6 (LM339).
- c) U5 y Q16 (LM324 e IRF740).
- d) D20 (1N4148).
- e) En caso de averías por descargas eléctricas o rayos: revisar diodos D29/30/35/36, incluir puntos anteriores.
- f) Relay de transferencia K1.

5.3 No carga

Las razones por las que la tarjeta 512-812 no cargue pueden ser una entre varia averías:

- a) Triac BTAxx-600 averiado
- b) Opto Triac MOC3020 debería ser reemplazado
- c) D28 en fuga (sacar y medirlo)
- d) Es probable que se haya abierto la pista que lleva 12Vdc del W2 (cable azul) a U7 (Opto Triac)
- e) U3 (LM324) / U5 (LM324)

5.4 No controla el cargador

- a) T2 es probable este mal conectado o el secundario abierto.
- b) Diodos de rectificación de T2 (D31 al 34) posiblemente en corto o en fuga.
- c) R102 (en equipos a 24Vdc) o pista abierta.

5.5 El Triac se quema reiterada veces.

- a) Opto Triac U7 MOC3020 averiado parcialmente. Reemplazar
- b) Devanado del transformado en corto circuito o recalentado.

5.6 Voltaje de flotación inestable.

- a) Opto Triac MOC3020 averiado parcialmente. Reemplazar
- b) Triac MOC3020 averiado parcialmente. Reemplazar
- c) U3 (LM324)
- d) R70/71/68
- e) Revisar capacitores del área de carga.

5.7 Sale contantemente de línea

- a) Aumentar margen inferior de línea con el potenciómetro R43
- b) Opto Triac U7 MOC3020 averiado parcialmente. Reemplazar.
- c) Diodos de rectificación de T1.
- d) Revisar diodos D29/30/35/36, pueden tener fuga
- e) D43 en corto.

5.8 Se apaga cuando transfiere a modo Inversor.

a) El nivel de voltaje de Flotación está muy alto y el equipo se paga por detección de alto voltaje en baterías (baje con potenciómetro R82 el nivel de flotación de carga según voltaje 13.4V -26.4V- 39.8V- 51V).

5.9 El relay de transferencia Oscila y el equipo termina no realizando el cambio hacia Línea.

- a) Revisar D4, D43, D28, D38
- b) Aumentar alrededor de los 1000uF/ 16V a C29

5.10 Voltaje y frecuencia inestables.

- a) U1
- b) C9/C10
- c) Q14

5.11 Cargador se escucha vibrando cuando está cargando.

- a) U7 (MOC3020)
- b) U3 (LM324)

5.12 Se dispara el breaker del cargador.

- a) Triac en corto circuito
- b) Opto Triac averiado
- c) Transformado sobre calentado en devanado de carga.

5.13 Alto consumo en modo inversor.

- a) Voltaje de salida muy alto, bajar con potenciómetro R3.
- b) Transformador sobrecalentado.
- c) Una fase de los transistores no esta trabajando.
- d) Transistor Mosfet de cancelación averiado.

5.14 Onda deformada (armónicos sumados)

- a) Transistores Mosfet área de canceladores averiados
- b) Q1 en corto circuito
- c) D14 y D15 averiado
- d) U1 (SG3524)
- e) U5 (HEF40106)

5.15 Al transferir a línea entra en alto consumo DC.

- a) Triac en corto circuito
- b) Contactos del relay de transferencia están soldados- reemplazar.
- c) Diodo D43 (free-well) del coil del relay K1 de transferencia en corto circuito.
- d) Transistores Mosfet área de canceladores averiados.
- e) Q1 abierto o en fuga

ANEXO I

FASES DE REPARACION

Antes de tomar cualquier equipo en su mesa de trabajo, aconsejamos seguir las siguientes fases de reparaciones.

FASE I: Revisión visual

- a) Datos suministrados por el cliente en relación al fallo que percibe, comprobar y retroalimentar.
- b) Chequeo* visual del equipo, componentes dañados, líneas abiertas, etc.
- c) Reparar las partes dañada. Cuando el técnico está dotado de los conocimientos necesarios y tiene las destrezas, el 90% se arregla en esta primera fase.

FASE II: Chequeo por áreas del equipo o etapas, según los conocimientos del técnico.

- a) Dar seguimiento a las fallas tal como se presentan en cada etapa del equipo y repararla.
- b) Enlazar etapas dependientes de otras. Ej.=el inversor se empieza a reparar por el sensor de línea cuando el fallo es que no transfiere a energía de calle y **no** empezar por los Mosfet e inclusive por relay.
- c) El chequeo de cada etapa, aun cuando lo hayamos creído que el equipo ha sido solucionado, así estaremos perfectamente seguro de que no fallará por otras consecuencias que no eran evidentes.
- d) Consultar algo escrito o llamar un colega que pueda ayudar.

FASE III: Chequeo tecnológico.

- a) El chequeo tecnológico requieres de los planos, diagramas esquemáticos, diagramas pictóricos, diagramas en bloques o etapa del equipo (puede visitar: www.megatonerd.com/soporte/soporte-descargas).
- b) Chequeo minucioso con el plano y la accesoria correspondiente de un colega y el esfuerzo suyo. Visitar páginas de internet o correos al "soporte técnico" de los fabricantes del equipo (puede visitar: www.megatonerd.com/soporte/soporte-tecnico o escribirnos a: soporte@megatonerd.com).

Nota: cuando el equipo llega a esta parte de la reparación se complica todo, más esfuerzo mental, más tiempo invertido y más costoso le sale al cliente. En todo se juega siempre la técnica del saber.

Recuerde: "un buen técnico siempre escribe sus conocimiento". Suerte!

^{*}Chequeo: revisar voltaje, corriente, resistencia, frecuencia, todo lo técnicamente hablado.

ANEXO II

RESUMEN DE FUNCINES DE CADA INTEGRADO Y TRANSISTOR EN LA TARJETA 512-812

- **U1**= SG3524: Oscilador/ Controlado PWM. Es el encargado de general las señales de conmutación de la etapa de potencia que genera conjuntamente con el transformador el voltaje del inversor.
- **U2**= CD4001: Compuerta lógica cuádruple OR.
- a) U2C/D fungen como driver y control de apagado de las 2 señales generadas por U1.
- b) U2A/B también es el driver de los transistores canceladores de armónicos.
 - **U3**= LM324: Amplificado Operacional cuádruple. Este integrado controla el cargador del equipo.
- a) U3A/B generan el cruce por cero y el generador de dientes de sierra
- b) U3C limita la corriente conjuntamente con T2.
- c) U3D limita el voltaje máximo de carga de las baterías.
 - **U4**= LM339: Comparador cuádruple.
- a) U4A/B Sensa la sobrecarga por apertura máxima en le PWM.
- b) U4C garantiza que los driver se mantengan apagados mientras el equipo está en modo "Solo carga" (W3 y W6 unidos).
- c) U4D conforma medio Latch (candado) de sobre carga.
 - **U5**= CD40106: Buffer inverso séxtuple.
- a) U5A es el driver de U4B.
- b) U5B es el driver de inversor del circuito detector de Línea AC (energía de la calle).
- c) U5C reinicia el arranque de alta frecuencia del U1 e indica que el modo Inversor esta activo.
- d) U5D es el driver del Interruptor SW1 [Puntos W6 (C), W3 (On1) y W2 (On2)].
- e) U5E es el inversor temporizado de U5D y
- f) U5F es el driver temporizador del circuito detector de "Línea AC" (energía de la calle).
 - **U6**= LM339: Comparador cuádruple.
- a) U6A/D conforman el circuito detector de "línea AC", mientras que
- b) U6B/C completan el circuito Latch de sobre carga (en combinación con U4D).